

# NASA's Space Launch System: A Revolutionary Capability for Science

#### **Bill Hill**

Deputy Associate Administrator Exploration Systems Development Division NASA Headquarters

#### **Stephen Creech**

Deputy Manager SLS Spacecraft/Payload Integration and Evolution

July 2014















## **SLS: An Evolving Capability**





Block 1 Initial Capability, 2017-21 70 metric ton Payload

#### **Evolutionary Path to Future Capabilities**

- Minimizes unique configurations
- Allows incremental development

Block 2 Capability 130 metric ton Payload

# **SLS' Primary Mandate**



# HUMAN EXPLORATION NASA's Path to Mars

MISSION: 6 TO 12 MONTHS RETURN TO EARTH: HOURS

MISSION: 1 TO 12 MONTHS RETURN TO EARTH: DAYS



#### **MARS READY**

MISSION: 2 TO 3 YEARS
RETURN TO EARTH: MONTHS



Mastering fundamentals aboard the International **Space Station** 

U.S. companies provide access to low-Earth orbit



Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft



Developing planetary independence by exploring Mars, its moons and other deep space destinations

# **Human Spaceflight and Space Science**





# **SLS Availability for Space Science**



- ◆SLS is on schedule and within budget for to be available for launches beginning in 2017.
- ◆ 5-meter payload fairings allow for payload envelopes compatible with current EELVs.
- ◆ Cargo-launch variants offer the reliability of a human-mission launch and power in excess of any launch vehicle in history.



# **SLS Development Milestones**





| MCR: Mission Concept Review     | CDR: Critical Design Review     |
|---------------------------------|---------------------------------|
| SRR: System Requirements Review | SIR: System Integration Review  |
| SDR: System Definition Review   | FRR: Flight Readiness Review    |
| PDR: Preliminary Design Review  | PLAR: Post-Launch Asses. Review |

## **SLS Benefits to Space Science**



- Greatest mass lift capability of any launch vehicle in the world.
- Largest payload fairings of any launch vehicle produce greatest available volume.
- ◆ High departure energy availability for missions through the solar system and beyond.



Deep Space Telescope



**Mars Sample Return** 



**Europa Clipper** 



Solar Probe



**Uranus Spacecraft** 



Interstellar

#### Benefit: SLS Mass Lift Capability



- SLS initial configuration offers 70 t to LEO.
- Future configurations offer 105 and 130 t to LEO.
- Mass capability benefits mean larger payloads to any destination.





# Case Study: Mars Sample Return



- Mars Sample Return was identified as a high priority in the "Visions and Voyages" planetary science decadal survey.
- SLS offers single-launch option for Mars Sample Return, versus three launches with EELVs.
- ◆Additional benefits of SLS for Mars Sample Return include reduced mission time, increased sample mass, and reduced mission cost, complexity and risk.



#### **Benefit: Unrivaled Payload Volume**



 SLS is investigating utilizing existing fairings for early cargo flights, offering payload envelope compatibility with design for current EELVs

Phase A studies in work for 8.4m and10 m fairing options



**4m x 12m** (100 m<sup>3</sup>)



5m x 14m (200 m<sup>3</sup>)



5m x 19m (300 m<sup>3</sup>)



8.4m x 31m (1200 m<sup>3</sup>)



10m x 31m (1800 m<sup>3</sup>)

# Case Study: ATLAST



- ◆ Large-aperture spectroscopic telescope was identified as a vital step in the "Enduring Quests, Daring Visions" astrophysics roadmap.
- SLS is uniquely enabling for largestdiameter telescopes due to fairingwidth requirements.
- ◆ Additional benefits of SLS for ATLAST include opportunities for human assembly and/or servicing at deep space destinations.



## **Benefit: High Departure Energy**



- Even the Initial configuration of SLS offers orders of magnitude greater payload-todestination energy compared to existing launch vehicles; future configurations improve C3 performance even further.
- Departure energy offers faster transit time to destination, including 4-7 year reduction to Saturn or 6 years to Uranus.
- Higher departure energy offers more launch opportunities.
- Trade space exists between departure energy and mass capability; a Jovian mission could see 3-year transit reduction or 13 t mass increase.



#### **SLS Evolved Performance**





## Case Study: Europa Clipper



- Europa exploration was identified as a high priority in the "Visions and Voyages" planetary science decadal survey.
- ◆ SLS can provide direct injection to Jupiter, eliminating several years of planetary gravity assists to reduce flight time to Europa from 6.3 years to 2.7.
- Additional benefits of SLS for Europa Clipper include reduced operational costs, reduced mission risk, and greater mass margin.



# **Outer Planet EELV Trajectories**



#### **Galileo Trajectory To Jupiter**



#### **Cassini Trajectory to Saturn**



#### **JUNO Trajectory To Jupiter**

Cruise: 4.9 yr.



#### **Atlas V Clipper Trajectory**



Cruise: 6.4 yr.

#### **Europa Trajectory Comparison**





**REDUCES TRANSIT TIME TO EUROPA FROM 6.5 TO 2.7 YEARS** 

#### **SLS Secondary Payload Capability**



- SLS is providing accommodations for secondary payloads on EM-1 and subsequent launches
- Secondary payloads will be accommodated in the Orion- MPCV Spacecraft Adapter (MSA) on EM-1
- 6U equivalent volume/mass is the current standard; 12U volume can be accommodated
  - 12U mass still being evaluated
  - Additional mounting locations are being evaluated
- SLS provides secondary payload science opportunities beyond EELVs capabilities (Lunar and beyond)







#### Possible Next Step: ARRM



- ◆ The Asteroid Redirect Robotic Mission is an early step on NASA's Path to Mars.
- SLS offers reduced transit time, providing earlier redirection of target and/ or greater launch opportunities.
- ◆Additional benefits of SLS for ARRM offer the potential for redirecting a larger object and for enabling a wider variety of targets.
- SLS could launch an ARRM spacecraft as early as 2019.



#### Summary



- SLS provides capability for human exploration missions.
  - •70 t configuration enables EM-1 and EM-2 flight tests.
  - Evolved configurations enable missions including humans to Mars.
- SLS offers unrivaled benefits for a variety of missions.
  - •70 t provides greater mass lift than any contemporary launch vehicle; 130 t offers greater lift than any launch vehicle, ever.
  - •With 8.4m and 10m fairings, SLS will over greater volume lift capability than any other vehicle.
  - •Initial ICPS configuration and future evolution will offer highestever C3.
- SLS is currently on schedule for first launch in December 2017.
  - Preliminary design completed in July 2013; SLS is now in implementation.
  - Manufacture and testing are currently underway.
  - Hardware now exists representing all SLS elements.





Somewhere, something incredible is waiting to be known.

— Carl Sagan

**For More Information** 

www.nasa.gov/sls

www.twitter.com/nasa sls

www.facebook.com/nasasls